Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(13): 15239-15250, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585078

RESUMO

A novel integrated electrochemical oxidation (EO) and bacterial degradation (BD) technique was employed for the remediation of the chloropyridinyl and chlorothiazolyl classes of neonicotinoid (NEO) insecticides in the environment. Imidacloprid (IM), clothianidin (CL), acetamiprid (AC), and thiamethoxam (TH) were chosen as the target NEOs. Pseudomonas oleovorans SA2, identified through 16S rRNA gene analysis, exhibited the potential for BD. In EO, for the selected NEOs, the total percentage of chemical oxygen demand (COD) was noted in a range of 58-69%, respectively. Subsequently, in the biodegradation of EO-treated NEOs (BEO) phase, a higher percentage (80%) of total organic carbon removal was achieved. The optimum concentration of NEOs was found to be 200 ppm (62%) for EO, while for BEO, the COD efficiency was increased up to 79%. Fourier-transform infrared spectroscopy confirms that the heterocyclic group and aromatic ring were degraded in the EO and further utilized by SA2. Gas chromatography-mass spectroscopy indicated up to 96% degradation of IM and other NEOs in BD (BEO) compared to that of EO (73%). New intermediate molecules such as silanediamine, 1,1-dimethyl-n,n'-diphenyl produced during the EO process served as carbon sources for bacterial growth and further mineralized. As a result, BEO enhanced the removal of NEOs with a higher efficiency of COD and a lower consumption of energy. The removal efficiency of the NEOs by the integrated approach was achieved in the order of AC > CL > IM > TH. This synergistic EO and BD approach holds promise for the efficient detoxification of NEOs from polluted environments.

2.
Front Microbiol ; 15: 1297721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544856

RESUMO

Background: Cooling towers are specialized heat exchanger devices in which air and water interact closely to cool the water's temperature. However, the cooling water contains organic nutrients that can cause microbial corrosion (MC) on the metal surfaces of the tower. This research explores the combined wastewater treatment approach using electrochemical-oxidation (EO), photo-oxidation (PO), and photoelectrochemical oxidation (PEO) to contain pollutants and prevent MC. Methods: The study employed electro-oxidation, a process involving direct current (DC) power supply, to degrade wastewater. MC studies were conducted using weight loss assessments, scanning electron microscopy (SEM), and x-ray diffraction (XRD). Results: After wastewater is subjected to electro-oxidation for 4 h, a notable decrease in pollutants was observed, with degradation efficiencies of 71, 75, and 96%, respectively. In the wastewater treated by PEO, microbial growth is restricted as the chemical oxygen demand decreases. Discussion: A metagenomics study revealed that bacteria present in the cooling tower water consists of 12% of Nitrospira genus and 22% of Fusobacterium genus. Conclusively, PEO serves as an effective method for treating wastewater, inhibiting microbial growth, degrading pollutants, and protecting metal from biocorrosion.

3.
Environ Geochem Health ; 46(3): 81, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367190

RESUMO

This study presents an environmentally sustainable method for minimizing sludge production in the textile effluent sector through the combined application of electrokinetic (EK) and electrooxidation (EO) processes. AAS and XRF analyses reveal that utilizing acidic electrolytes in the EK method successfully eliminates heavy metals (Cu, Mn, Zn, and Cr) from sludge, demonstrating superior efficiency compared to alkaline conditions. In addition, the total removal efficiency of COD contents was calculated following the order of EK-3 (60%), EK-1 (51%) and EK-2 (34%). Notably, EK-3, leveraging pH gradient fluctuations induced by anolyte in the catholyte reservoir, outperforms other EK systems in removing COD from sludge. The EK process is complemented by the EO process, leading to further degradation of dye and other organic components through the electrochemical generation of hypochlorite (940 ppm). At an alkaline pH of 10.0, the color and COD removal were effectively achieved at 98 and 70% in EO treatment, compared to other mediums. In addition, GC-MS identified N-derivative residues at the end of the EO. This study demonstrates an integrated approach that effectively eliminates heavy metals and COD from textile sludge, combining EK with EO techniques.


Assuntos
Metais Pesados , Esgotos , Esgotos/química , Metais Pesados/análise , Têxteis
4.
Environ Res ; 242: 117753, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008204

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are potentially hazardous compounds that could cause a severe impact on many ecosystems. They are very challenging to remove using conventional methods due to their hydrophobic nature. However, this issue can be resolved by utilizing surface-active molecules to increase their bioavailability. In this study, pyrene was chosen as the PAH compound to explore its degradability by the effect of individual bacterial strains (Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3) and mixed consortia (MC) along with natural surfactant derived from Sapindus mukorossi and iron oxide nanoparticles (NPs). Additionally, fatty acids esters, dipeptides, and sugar derivative groups were identified as potent bioactive components of natural surfactants. Various techniques, such as XRD, VSM, TEM, and FE-SEM with EDX, were utilized to characterize the pristine and Fenton-treated iron oxide NPs. The analytical results confirmed that the Fe3O4 crystal phase and spherical-shaped NPs exhibited excellent magnetic properties. The impact of natural surfactants and iron oxide NPs has significantly contributed to the biodegradation process, resulting in a prominent decrease in chemical oxygen demand (COD) levels. Gas chromatography-mass spectrometry (GC-MS) analysis showed that biodegradation systems produced primary hydrocarbon intermediates, which underwent oxidative degradation through Fenton treatment. Interestingly, synthesized iron oxide NPs effectively produced hydroxyl radical (•OH) during the Fenton reaction, which was confirmed by electron paramagnetic resonance (EPR) spectra, and the pristine iron oxide NPs underwent a material transformation observed. The study demonstrated an integrated approach for biodegradation and the Fenton reaction process to enhance the pyrene degradation efficiency (90%) compared to other systems. Using natural surfactants and iron oxide NPs in aquatic environments serves as a crucial platform at the interface of microorganisms and contaminated oil products. This interaction offers a promising solution for PAHs bioremediation.


Assuntos
Compostos Férricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Tensoativos/química , Biodegradação Ambiental , Ecossistema , Poluentes do Solo/análise , Pirenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Bactérias/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro
5.
Environ Res ; 244: 117911, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104919

RESUMO

Poly aromatic hydrocarbons (PAHs) are considered as hazardous compounds which causes serious threat to the environment dua to their more carcinogenic and mutagenic impacts. In this study, Pseudomonas aeruginosa PP4 strain and synthesized iron nanoparticles were used to evaluate the biodegradation efficiency (BE %) of residual anthracene. The BE (%) of mixed degradation system (Anthracene + PP4+ FeNPs) was obtained about 67 %. The FTIR spectra result revealed the presence of functional groups (C-H, -CH3, CC, =C-H) in the residual anthracene. The FESEM and TEM techniques were used to determine the surface analysis of the synthesized FeNPs and the average size was observed by TEM around 5-50 nm. The crystalline nature of the synthesized iron nanoparticles was confirmed by the observed different respective peaks of XRD pattern. The various functional constituents (OH, C-H, amide I, CH3) were identified in the synthesized iron nanoparticles by FTIR spectrum. In conclusion, this integrated nano-bioremediation approach could be an promising and effective way for many environmental fields like cleanup of hydrocarbon rich environment.


Assuntos
Antracenos , Pseudomonas aeruginosa , Antracenos/metabolismo , Ferro , Biodegradação Ambiental , Nanopartículas Magnéticas de Óxido de Ferro
6.
J Colloid Interface Sci ; 656: 424-439, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38000254

RESUMO

Manipulating metal valence states and porosity in the metal-organic framework (MOF) by alloying has been a unique tool for creating high-valent metal sites and pore environments in a structure that are inaccessible by other methods, favorable for accelerating the catalytic activity towards sensing applications. Herein, we report Fe3+-driven formation of catalytic active Ni3+ species in the amine-crafted benzene-dicarboxylate (BDC-NH2)-based MOF as a high-performance electrocatalyst for glucose sensing. This work took the benefit of different bonding stability between BDC-NH2 ligand, and Fe3+ and Ni2+ metal precursor ions in the heterometallic NixFe(1-x)-BDC-NH2 MOF. The FeCl3 that interacts weakly with ligand, oxidizes the Ni2+ precursor to Ni3+-based MOF owing to its Lewis acidic behavior and was subsequently removed from the structure supported by Ni atoms, during solvothermal synthesis. This enables to create mesopores within a highly stable Ni-MOF structure with optimal feed composition of Ni0.7Fe0.3-BDC-NH2. The Ni3+-based Ni0.7Fe0.3-BDC-NH2 demonstrates superior catalytic properties towards glucose sensing with a high sensitivity of 13,435 µA mM-1 cm-2 compared to the parent Ni2+-based Ni-BDC-NH2 (10897 µA mM-1cm-2), along with low detection limit (0.9 µM), short response time (≤5 s), excellent selectivity, and higher stability. This presented approach for fabricating high-valent nickel species, with a controlled quantity of Fe3+ integrated into the structure allowing pore engineering of MOFs, opens new avenues for designing high-performing MOF catalysts with porous framework for sensing applications.

7.
Chemosphere ; 345: 140516, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879370

RESUMO

Azo dyes are the most varied class of synthetic chemicals with non-degradable characteristics. They are complex compounds made up of many different parts. It was primarily utilized for various application procedures in the dyeing industry. Therefore, it's crucial to develop an economical and environmentally friendly approach to treating azo dyes. Our present investigation is an integrated approach to the electrooxidation (EO) process of azo dyes using RuO2-IrO2-TiO2 (anode) and titanium mesh (cathode) electrodes, followed by the biodegradation process (BD) of the treated EO dyes. Chemical oxygen demand (COD) removal efficiency as follows MB (55%) ≥ MR (45%) ≥ TB (38%) ≥ CR (37%) correspondingly. The fragment generated during the degradation process which was identified with high-resolution mass spectrometry (HRMS) and its degradation mechanism pathway was proposed as demethylation reaction and N-N and C-N/C-S cleavage reaction occurs during EO. In biodegradation studies by Aeromonas hydrophila AR1, the EO treated dyes were completely mineralized aerobically which was evident by the COD removal efficiency as MB (98%) ≥ MR (92.9%) ≥ TB (88%) ≥ CR (87%) respectively. The EO process of dyes produced intermediate components with lower molecular weights, which was effectively utilized by the Aeromonas hydrophila AR1 and resulted in higher degradation efficiency 98%. We reported the significance of the enhanced approach of electrochemical oxidation with biodegradation studies in the effective removal of the pollutants in dye industrial effluent contaminated water environment.


Assuntos
Aeromonas hydrophila , Poluentes Químicos da Água , Compostos Azo/química , Oxirredução , Titânio/química , Corantes/química , Eletrodos , Poluentes Químicos da Água/análise
8.
Chemosphere ; 344: 140340, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778647

RESUMO

Biosurfactants are surface active molecules generated by various microorganisms, including bacteria, actinobacteria, algae, and fungi. In this study, bacterial strains are isolated from soil contaminated with used motor oil and examined for potential biosurfactant production. A minimum salt medium (MSM), with crude oil as the only carbon source, is used to isolate potential biosurfactant-producing bacterial strains. About 23 strains are isolated, and all are subjected to the primary screening methods for biosurfactant production. Based on the emulsification index, oil displacement, and drop collapse screening methods, two isolates with potential biosurfactant-producing ability are selected for further studies. The synthesis of biosurfactants, crude oil and anthracene biodegradation is carried out with strains DTS1 and DTS2. Both strains show significant outcomes in crude oil degradation. In addition, both strains can utilize anthracene as the sole carbon source. During the degradation course, changes in the growth conditions are continuously monitored by measuring turbidity and pH. In this degradation study, the biosurfactant production aptitude of the isolated strains plays an essential role in increasing the bioavailability of hydrophobic hydrocarbons. These strains are identified down to the molecular level by employing 16S rRNA gene sequencing, and the acquired sequences are submitted to get the accession numbers. These prospective strains can be utilized to remediate hydrocarbon-contaminated environments.


Assuntos
Bacillus , Petróleo , Bacillus/metabolismo , Petróleo/análise , RNA Ribossômico 16S/genética , Estudos Prospectivos , Tensoativos/química , Bactérias/metabolismo , Hidrocarbonetos/metabolismo , Biodegradação Ambiental , Antracenos/metabolismo , Carbono/metabolismo
9.
Sci Rep ; 13(1): 15153, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704703

RESUMO

The widespread use of synthetic pesticides has resulted in a number of issues, including a rise in insecticide-resistant organisms, environmental degradation, and a hazard to human health. As a result, new microbial derived insecticides that are safe for human health and the environment are urgently needed. In this study, rhamnolipid biosurfactants produced from Enterobacter cloacae SJ2 was used to evaluate the toxicity towards mosquito larvae (Culex quinquefasciatus) and termites (Odontotermes obesus). Results showed dose dependent mortality rate was observed between the treatments. The 48 h LC50 (median lethal concentration) values of the biosurfactant were determined for termite and mosquito larvae following the non-linear regression curve fit method. Results showed larvicidal activity and anti-termite activity of biosurfactants with 48 h LC50 value (95% confidence interval) of 26.49 mg/L (25.40 to 27.57) and 33.43 mg/L (31.09 to 35.68), respectively. According to a histopathological investigation, the biosurfactant treatment caused substantial tissue damage in cellular organelles of larvae and termites. The findings of this study suggest that the microbial biosurfactant produced by E. cloacae SJ2 is an excellent and potentially effective agent for controlling Cx. quinquefasciatus and O. obesus.


Assuntos
Culex , Culicidae , Inseticidas , Isópteros , Poríferos , Humanos , Animais , Enterobacter cloacae , Cloaca , Inseticidas/farmacologia , Larva
10.
Front Microbiol ; 14: 1225769, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601383

RESUMO

Introduction: Ointments are generally used as a therapeutic agent for topical medication or transdermal drug delivery, such as wound healing and skin lesions. Methods: In this study, Tridax procumbens plant extract (0.7 g/mL) was used to prepare herbal-infused oil as the oil phase and gelatin-stabilized silver nanoparticle (G-AgNPs) (0.3 g/mL) as the aqueous phase. To blend the oil and aqueous phases, rhamnolipid biosurfactant with a critical micelle concentration of 55 mg/L from strain Pseudomonas aeruginosa PP4 has been used for herb ointment preparation. The average size of the synthesized G-AgNPs was observed between 10-30 nm and confirmed as spherical-shaped particles by TEM analysis. Subsequently, GC-MS and FTIR characterization are used to confirm herb ointment's chemical and functional characteristics. Results: Based on the antibacterial studies, the highest microbial growth inhibition was observed for herb ointment, about 19.5 mm for the pathogen Staphylococcus aureus at the concentration of 100 µg/mL, whereas 15.5 mm was obtained for Escherichia coli, respectively. In addition, the minimum inhibitory concentration (MIC) assay showed negligible bacterial growth at 100 µg/mL for S. aureus and E. coli, respectively. Moreover, the cell viability assay for herb ointment exhibited low cytotoxic activity at higher concentrations (100 µg/mL) in Vero cell lines. In this study, wound scratch assay showed a significant cell migration rate (90 ± 2%) in 3 days of incubation than the control (62 ± 2%). Discussion: As a result, the biosurfactant-based nano-topical herb ointment revealed a low cytotoxic and higher cell migration capacity. Altogether, these findings highlighted the utility of this herb ointment in therapeutic applications such as wound healing.

11.
Chemosphere ; 331: 138816, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37146779

RESUMO

Textile effluent contains a highly toxic and refractory azo dyes. Eco-friendly method for efficient decolorization and degradation of textile effluent is essential. In the present study, treatment of textile effluent was carried through sequential electro oxidation (EO) and photo electro oxidation (PEO) using RuO2-IrO2 coated titanium electrode as an anode and cathode followed by biodegradation. The pre-treatment of textile effluent by photo electro oxidation for 14 h exhibited 92% of decolorization. Subsequent biodegradation of the pre-treated textile effluent enhanced the reduction of chemical oxygen demand to 90%. Metagenomics results exhibited that Flavobacterium, Dietzia, Curtobacterium, Mesorhizobium, Sphingobium, Streptococcus, Enterococcus, Prevotellaand Stenotrophomonas bacterial communities majorly involved in the biodegradation of textile effluent. Hence, integrating sequential photo electro oxidation and biodegradation proposed an efficient and eco-friendly approach for treating textile effluent.


Assuntos
Actinomycetales , Bactérias , Biodegradação Ambiental , Bactérias/genética , Bactérias/metabolismo , Têxteis , Oxirredução , Actinomycetales/metabolismo , Compostos Azo , Corantes/metabolismo , Indústria Têxtil
12.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36724285

RESUMO

Environmental contamination brought on by the discharge of wastewater from textile industries is a growing concern on a global scale. Textile industries produce a huge quantity of effluents containing a myriad of chemicals, mostly dyes. The discharge of such effluents into the aquatic environment results in pollution that adversely affects aquatic organisms. Synthetic dyes are complex aromatic chemical structures with carcinogenic and mutagenic properties in addition to high biological oxygen demand (BOD) and chemical oxygen demand (COD). This complex aromatic structure resists degradation by conventional techniques. The bioremediation approach is the biological clean-up of toxic contaminants from industrial effluents. Biological treatment methods produce less or no sludge and are cost-effective, efficient, and eco-friendly. Microorganisms, mostly microalgae and bacteria, and, in some instances, fungi, yeast, and enzymes decolorize textile dye compounds into simple, non-toxic chemical compounds. Following a thorough review of the literature, we are persuaded that microalgae and bacteria might be one of the potential decolorizing agents substituting for most other biological organisms in wastewater treatment. This article presents extensive literature information on textile dyes, their classification, the toxicity of dyes, and the bioremediation of toxic textile industry effluent utilizing microalgae and bacteria. Additionally, it combines data on factors influencing textile dye bioremediation, and a few suggestions for future research are proposed.


Assuntos
Resíduos Industriais , Indústria Têxtil , Humanos , Biodegradação Ambiental , Resíduos Industriais/análise , Corantes/metabolismo , Têxteis
13.
Environ Monit Assess ; 195(2): 274, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607436

RESUMO

An ever-increasing use of pesticides in agricultural fields has led to a catastrophic decline in crop quality and, ultimately soil fertility. To control various pests, quinalphos is commonly used in India's tea plantations. This study aims to investigate the effects of the Quinalphos organophosphate insecticide on the non-target beneficial organism Eudrilus eugeniae earthworms and the biomarkers that respond to its effects. Earthworm species, especially E. eugeniae, remains as the most trustworthy and well-suited model organism for conducting a wide variety of environmental studies. The median lethal concentration (LC50) was identified as 3.561 µg cm-2 (contact filter paper) and 1.054 mg kg-2 (artificial soil toxicity). The 5% and 10% of LC50 value 3.561 µg cm-2 was exposed to earthworm to analyze the sublethal effects at pre-clitellum, clitellum, and post-clitellum segments. Specific enzymatic activities of neurotransmitter enzyme acetylcholinesterase; antioxidant enzymes such as lipid peroxidase, superoxide dismutase, and catalase; and detoxification enzymes including glutathione S transferase, reduced glutathione, carboxylesterase, and Cytochrome P450 were analyzed. Exposure of E. eugeniae earthworm to subacute exposures of pesticides caused significant alterations in these stress markers in a concentration-dependent manner. Morphological abnormalities like bulginess, coiling, and bleeding were observed after exposure of the insecticide treatments. Histological cellular disintegration, a reduced NRRT time, and an inhibited proteolytic zone were also identified in pesticide-exposed earthworms. Studies demonstrate that the organophosphate insecticide quinalphos causes acute toxicity in E. eugeniae; hence, it is suggested that non-target eco-friendly E. eugeniae earthworms may be at risk if exposed to the excessive concentrations of quinalphos organophosphate insecticide in soil.


Assuntos
Inseticidas , Oligoquetos , Praguicidas , Poluentes do Solo , Animais , Inseticidas/toxicidade , Oligoquetos/fisiologia , Acetilcolinesterase , Monitoramento Ambiental , Praguicidas/toxicidade , Poluentes do Solo/toxicidade , Solo , Biomarcadores , Organofosfatos/toxicidade
14.
Chemosphere ; 310: 136826, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36243087

RESUMO

This study aimed to carry out the bioaugmentation of crude oil/motor oil contaminated soil. The mixture of novel strains Pseudomonas aeruginosa PP3 and Pseudomonas aeruginosa PP4 were used in this bioaugmentation studies. The four different bioaugmentation systems (BS 1-4) were carried out in this experiment labelled as BS 1 (Crude oil contaminated soil), BS 2 (BS 1 + bacterial consortia), BS 3 (Motor oil sludge contaminated soil), and BS 4 (BS 3 + bacterial consortia). The total petroleum hydrocarbon (TPH) was investigated for monitor the effectiveness of bioaugmentation process. The highest TPH removal rate was recorded on BS 4 (9091 mg Kg -1) was about 67% followed by 52% on BS 2 (8584 mg Kg -1) respectively. The percentage of biodegradation efficiency (BE) of residual crude and motor oil contaminated soil were evaluated by GCMS analysis and the results showed that 65% (BS 2) and 83% (BS 4) respectively. Further the bioaugmented soil was subjected to the plant cultivation (Lablab purpureus) and the results revealed that the L. purpureus was rapidly grown in the systems BS 4 and BS 2 than the system BS 1 and BS 2 which was due to the lesser biodegradation of the crude oil contents. In resultant, it can be concluded that the soil was suitable for the cultivation of plant. Overall, this study revealed that the selected bacterial consortia were effectively degraded the hydrocarbon and act as a potential bioremediator in the hydrocarbon polluted soil in a short period.


Assuntos
Petróleo , Poluentes do Solo , Petróleo/metabolismo , Solo/química , Pseudomonas/metabolismo , Poluentes do Solo/análise , Microbiologia do Solo , Hidrocarbonetos/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo
15.
Sci Total Environ ; 856(Pt 2): 159203, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36202367

RESUMO

Sulfate-reducing bacteria (SRB) have impacted the biocorrosion process for various industrial sectors, especially in the oil and gas industry. The higher stability over extreme conditions is the key parameter for their survival in such environments. So far, many materials have been tried to minimize or control the growth of SRB. In the present study, an organo-metallic compound of the zinc sorbate (ZS) was successfully synthesized by the simple co-precipitation method and its improved antibacterial activity against SRB. The SRB consortia are enriched from the sub-surface soil sample and identified by 16s rDNA sequencing by targeting the V3-V4 region. The most dominating genera identified with sulfate-reducing capability are Sulfurospirillum (42 %), Shewanella (19 %) Bacteroides (14 %), and Desulfovibrio (8 %). Further biocorrosion experiments are conducted by weight loss methods. Higher corrosion current density (Icorr) and less charge transfer resistance (Rct) are observed for the SRB consortia. Concurrently, higher Rct is kept for the inhibitor-included systems. The slowest release of the sorbate into the medium suppressed the growth of the SRB bacterial cells with 86 ± 3 % corrosion inhibition efficiency and prevented further corrosion reactions by forming a protective layer over the surface of the carbon steel API 5LX. The surface analysis strongly confirmed that SRB caused pitting corrosion, which has been suppressed in the inhibitor-included systems.


Assuntos
Biofilmes , Desulfovibrio , Corrosão , Aço , Sulfatos
16.
Bioprocess Biosyst Eng ; 45(11): 1825-1837, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36156176

RESUMO

This study aims to develop a reduced graphene oxide (RGO)-silver nanoparticles (AgNPs) coating on the cotton fabric (CT) surface using photoreduction with a hydrothermal process and evaluate the antibacterial activity in a sweat environment. An ureolytic bacterium of Bacillus subtilis (HM475276) was used to generate ammonia from synthetic urine. RGO-AgNPs were synthesized on the CT surface using a moderate dosage of 1% silver ammonium complex. The analytical study reveals that spherical-shaped AgNPs of 10-50 nm size were uniformly anchored throughout the RGO sheet on the CT, further supported by X-ray photoelectron spectroscopic analysis (XPS). X-ray powder diffraction (XRD) and Energy-dispersive X-ray absorption spectroscopy (EDAX) elemental mapping confirmed Ag/AgCl formation on CT treated with sweat. The sustained release of Ag+ ions from the treated CT in the sweat solution was assessed by atomic absorption spectroscopy (AAS) and ranged from 2 to 8 ppm, correlated with antibacterial activity. The agar diffusion and solution suspension method to demonstrate the combat bacterial species were greater on RGO-AgNPs-CT than sweat-treated CT due to the suppression of Ag+ ion release caused by the deposition of Ag/AgCl. Hence, sweat-treated RGO-AgNPs-CT proved to have higher inactivation activity (45 min) than sweat-treated AgNPs-CT (60 min) due to the RGO-Ag/AgCl serving photocatalyst influencing hydroxyl radical (OH·) formation under sunlight. The RGO-AgNPs-CT has confirmed that it retains antibacterial activity after passing the laundry durability test. Together, the results showed an opportunity for improved functional fabrics that are exceptional at combating bacterial pathogens and holding up well to laundry durability tests.


Assuntos
Nanopartículas Metálicas , Prata , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Suor , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias
17.
Microbiol Res ; 265: 127184, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115172

RESUMO

Hydrocarbon contamination is continuing to be a serious environmental problem because of their toxicity. Hydrocarbon components have been known to be carcinogens and neurotoxic organic pollutants. The physical and chemical methods of petroleum removal have become ineffective and also are very costly. Therefore, bioremediation is considered the promising technology for the treatment of these contaminated sites since it is cost-effective and will lead to complete mineralization.The current study also concentrates on bioremediation of petroleum products by bacterium isolated from petroleum hydrocarbon contaminated soil. The current work shows that bacterial strains obtained from a petroleum hydrocarbon contaminated environment may degrade petroleum compounds. Two strains Bacillus licheniformis ARMP2 and Pseudomonas aeruginosa ARMP8 were identified as petroleum-degrading bacteria of the isolated bacterial colonies. The best growth conditions for the ARMP2 strain were determined to be pH 9, temperature 29 °C with sodium nitrate as its nitrogen source, whereas for the ARMP8 strain the optimal growth was found at pH 7, temperature 39 °C, and ammonium chloride as the nitrogen source. Both strains were shown to be effective at degrading petroleum chemicals confirmed by GCMS. Overall petroleum product degradation efficiency of the strains ARMP2 and ARMP8 was about 88 % and 73 % respectively in 48 h.The strains Bacillus licheniformis ARMP2 and Pseudomonas aeruginosa ARMP8 were shown to be effective at degrading petroleum compounds in the current study. Even greater results might be obtained if the organisms were utilised in consortia or the degradation time period was extended.


Assuntos
Petróleo , Poluentes do Solo , Cloreto de Amônio/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Carcinógenos/metabolismo , Hidrocarbonetos/metabolismo , Hidrocarbonetos/toxicidade , Nitrogênio/metabolismo , Petróleo/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo
19.
Environ Res ; 214(Pt 1): 113824, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35830909

RESUMO

In recent years, wide spread of antibiotic-resistant microorganisms and genes emerging globally, an eco-friendly method for efficient degradation of antibiotics from the polluted environment is essential. Intimately coupled photocatalysis and biodegradation (ICPB) using gC3N4 for enhanced degradation of sulfamethoxazole (SMX) was investigated. The gC3N4 were prepared and coated on the carbon felt. The mixed culture biofilm was developed on the surface as a biocarrier. The photocatalytic degradation showed 74%, and ICPB exhibited 95% SMX degradation efficiency. ICPB showed superior visible light adsorption, photocatalytic activity, and reduced charge recombination. The electron paramagnetic resonance spectrum confirms that the generation of •OH and O2• radicals actively participated in the degradation of SMX into biodegradable intermediated compounds, and then, the bacterial communities present in the biofilm mineralized the biodegradable compound into carbon dioxide and water. Moreover, the addition of NO3-, PO4-, and Cl- significantly enhanced the degradation efficiency by trapping the surface electron. Stability experiments confirmed that gC3N4 biohybrid can maintain 85% SMX degradation efficiency after 5 consecutive recycling. Extracellular polymeric substances characterization results show that biohybrid contains 47 mg/L, 14 mg/L, and 13 mg/L protein, carbohydrate, and humic acid, respectively, which can protect the bacterial communities from the antibiotic toxicity and reactive oxygen species. Furthermore, biotoxicity was investigated using degradation products on E.coli and results revealed 83% detoxification efficiency. Overall, this study suggested that gC3N4 photocatalyst in an ICPB can be used as a promising eco-friendly method to degrade sulfamethoxazole efficiently.


Assuntos
Sulfametoxazol , Titânio , Antibacterianos , Bactérias , Biodegradação Ambiental , Biofilmes
20.
Environ Sci Pollut Res Int ; 29(51): 77800-77808, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35688976

RESUMO

The development of environmentally acceptable benign techniques using purely natural methods is a cost-effective procedure with long-term benefits in all areas. With this consideration, myco synthesized silver nano particles (AgNPs) were studied and it acted as an impending corrosion inhibitor in the environment. Initially, AgNPs were evaluated by physical and surface characterizations and this evidence demonstrated that RYRE's water-soluble molecules played an essential role in the synthesis of AgNPs in nano spherical size. The myco synthesized of AgNPs has showed an antibacterial activity against corrosive bacteria in cooling water system (CWS). Hence, the AgNPs were used in biocorrosion studies as an anticorrosive agent along with AgNO3 and RYRE was also checked. For this experiment, the copper (Cu) metal (CW024) which is commonly used was selected, the result of corrosion rate was decreased, and inhibition efficiency (82%) was higher in the presence of AgNPs in system IV. Even though, AgNO3 and RYRE had contributed significant inhibition efficiency on Cu at 47% and 61%, respectively. According to XRD, the reaction of AgNPs on Cu metal resulted in the formation of a protective coating of Fe2O3 against corrosion. EIS data also indicated that it could reduce the corrosion on the Cu metal surface. All of these findings point out the possibility that the myco-synthesized AgNPs were an effective copper metal corrosion inhibitor. As a result, we encourage the development of myco-synthesized AgNPs, which could be useful in the industrial settings.


Assuntos
Cáusticos , Nanopartículas Metálicas , Prata/farmacologia , Cobre/farmacologia , Cáusticos/farmacologia , Biofilmes , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Água , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...